

Aaditya Gaur

US Citizen +1 (765) 543-7749 aaditya2605@gmail.com github.com/Aaditya2605 linkedin.com/in/aadityagaur

Computer Engineering undergraduate specializing in **ASIC Design, FPGA hardware design, and Embedded Systems**. Proven experience in architecting SystemVerilog SoCs with standard bus protocols and developing bare-metal firmware for microprocessor peripherals. Skilled in bridging the hardware-software gap to build optimized, high-performance systems.

EDUCATION

Purdue University, West Lafayette, IN
Bachelor of Science in Computer Engineering
GPA: 3.75/4.0

May 2027

Relevant Coursework: ASIC Design, Microprocessor Systems, Algorithmic Analysis, Data Structures, Signals & Systems
Honors: Garmin Scholar, Dean's List & Semester Honors

TECHNICAL SKILLS

Hardware Design (RTL): SystemVerilog, Verilog, VHDL, QuestaSim, Xilinx Vivado

Embedded Systems: C, C++, ARM Cortex-M, RISC-V, STM32, Raspberry Pi

Protocols & Peripherals: UART, I2C, SPI, USB, PWM, AMBA, ADCs/DACs, GPIO, Timers, FIFO

Programming & Tools: Python, MATLAB, Git, Linux, KiCAD, Analog Discovery

TECHNICAL PROJECTS

Custom SoC Architecture & RTL Design — *SystemVerilog, AHB/APB, QuestaSim*

- Architecting a modular SystemVerilog SoC with **AHB and APB bus fabrics** connecting custom peripheral IP.
- Designed and verified a **UART receiver and FIR hardware accelerator**, optimized for timing closure and area.
- Implemented a **USB 1.1 controller** including endpoint buffers, packet decoding, and transaction management.
- Built layered testbenches in QuestaSim to validate protocol compliance and ensure deterministic behavior.

AlgoFPGA: Hardware Algorithm Accelerator Library — *Vivado, Verilog, RTL*

- Developing a reproducible FPGA accelerator library implementing hardware versions of key algorithms.
- Created fully-parameterized RTL blocks for algorithmic primitives, enabling fast prototyping and collaborative extension.
- Built timing-optimized implementations using Xilinx Vivado and validated functionality using simulation testbenches.

MAJA: Embedded Motion-Controlled Console — *C, RP2350, SPI/I2C, PCB Design*

- Programmed low-level C drivers for TFT display (SPI) and IMU (I2C) on the RP2350 MCU.
- Designed a custom PCB integrating the TFT display, keypad, IMU sensor, and RP2350 controller into a single compact board.

BoilerVibe: Social App for Purdue Students — *UI/UX, Frontend Development*

- Designed a responsive UI and implemented core front-end features to ensure smooth user experience across devices.
- Optimized interface transitions and navigation to improve usability and engagement.

PROFESSIONAL EXPERIENCE

Machine Learning Intern

CLAN Labs, Purdue University

May – Aug 2025

Remote

- Worked with Prof. Vaneet Agarwal on atmospheric turbulence optimization for astronomical imaging systems.
- Implemented reinforcement learning pipelines using **Proximal Policy Optimization (PPO)** to iteratively correct extreme turbulence without relying on wavefront sensors.
- Built Bayesian Neural Networks to validate RL models, improving reliability, quantifying uncertainty, and ensuring robustness across varying turbulence conditions.

Undergraduate Teaching Assistant

Purdue ECE (ECE 368, ECE 369, ENGR 131)

Aug 2024 – Present

West Lafayette, IN

- Supported instruction for 200+ students, simplifying complex algorithmic and logic concepts into simple explanations.
- Delivered weekly office hours and personalized guidance, strengthening students' problem-solving ability and foundational reasoning essential for embedded and hardware design.

ML Researcher

Laboratory for Computational Social Systems (LCS2), IIT Delhi

May – Aug 2024

New Delhi, India

- Analyzed 500+ annotated internet memes to investigate bias propagation in Large Language Models under Prof. Tanmoy Chakraborty.
- Applied statistical and algorithmic techniques to characterize harmful content bias and identify model failure modes.